

Journal of Organometallic Chemistry 628 (2001) 57-64

www.elsevier.nl/locate/jorganchem

Silylene R*XSi (R* = Si^tBu₃; X = H, Me, Ph, Hal, R*): Bildung und Reaktionen^{\ddagger}

Nils Wiberg *, Wolfgang Niedermayer

Department Chemie der Universität München, Institut fur Anorganische Chemie, Butenandtstrasse 5-13 (Haus D), D-81377 Munich, Germany

Eingegangen am 16 Oktober 2000; akzeptiert am 12 Februar 2001

Professor Dr. Marianne Baudler zum 80. Geburtstag Gewidmet

Abstract

Thermolyses of disupersilylsilanes $R_2^*SiX_2$ ($R^* = supersilyl = Si'Bu_3$; X = H, Hal or H together with Me, Ph, Br) at about 160°C lead — besides R^*X (R^*H preferred to R^*Br) — to silylenes R^*XSi (X = H, Me, Ph, Br), the intermediate existence of which is proven by trapping them with Et_3SiH (formation of $Et_3Si-(R^*XSi)-H$), with I_2 (formation of $I-(R^*XSi)-I$) or with $CH_2=CH-CH=CH_2$ (formation of [1 + 4] cycloadducts). The rate of R^*X elimination increases in direction $R_2^*SiH_2 < R_2^*SiMeH < R_2^*SiBrH$ and $R_2^*SiF_2 < R_2^*SiBr_2 < R_2^*SiI_2$. In addition, silylenes R^*XSi are produced from monosupersilylsilanides $R^*XSiHalM$ (X = H, Ph, Hal; M = Na, MgHal) by MHal elimination at low temperatures and trapped by inserting them into SiH- or SiM-bonds of Et_3SiH , $R^*PhClSiH$, R^*Na and $R^*XSiHalM$. Thermolyses of R^*SiX_2Na (X = Cl, Br, I) yield — via R^*XSi — disilanides $R^*X_2Si-(R^*XSi)-Na$ which at about -20° C eliminate NaX with formation of *trans*-configurated disilenes $R^*XSi=SiXR^*$ as intermediates. In addition, R^*SiCl_2Na transforms into $R^*Cl_2Si-(R^*ClSi)_n-Na$ (n = 2, 3) which eliminates NaCl with formation of cyclosilanes (R^*ClSi_{n+1} . Finally, disupersilylsilanides $R_2^*SiHalLi$ eliminate LiF at room temperature or LiCl at -78° C or LiBr at -120° C with formation of the silylene R_2^*Si which stabilizes by formation of the silane $R_2^*SiH_2$ and the disilacyclobutane $-R^*HSi-Si'Bu_2-CMe_2-CH_2-$ in the molar ratio 1:6. Possibly, in the latter case R_2^*Si is not formed in the singulet state, as is usual with silylenes, but in the triplet state for the first time. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Silicon; Supersilyl; Silanides; Silylenes; Disilenes; Cyclosilanes

1. Einleitung

Silylene R₂Si werden seit Jahrzehnten eingehend untersucht. Bisher kennt man knapp 10 metastabile Silylene und hat viele Silylene als reaktive Zwischenstufen nachgewiesen, wie den in Ref. [1] aufgeführten Übersichtsartikeln zu entnehmen ist. In den isolierbaren Silylenen ist das zweibindige Si-Atom typischerweise in einen fünfgliederigen Ring -X-C-C-X-Si- eingebunden, wobei X ein N-Atom ist (man kennt seit kurzem darüber hinaus auch ein isolierbares Silylen mit X = C [1h]). Acyclische Silylene mit zweibindigem SiAtom ließen sich bisher nicht unter Normalbedingungen isolieren.

Die Erzeugung von Silvlenen erfolgt in der Regel durch thermische oder photochemische YZ-Abspaltung aus Silanen R₂SiYZ. Thermisch eliminiert man aus R₂SiYZ vielfach Silylverbindungen $YZ = R'_3SiZ$ $(R_2SiZ-SiR'_3 + W\ddot{a}rme \rightarrow R_2Si + R'_3SiZ)$ oder Alkalimetallhalogenide YZ = MHal (R_2 SiHalM + Wärme \rightarrow $R_2Si + MHal$), photochemisch Disilane $YZ = R'_3SiSiR'_3$ oder Oligosilane (z. B. $R_2Si(SiR'_3)_2 + Licht \rightarrow R_2Si +$ $R'_{3}SiSiR'_{3}$). Die thermische Bildung von $R'_{3}SiZ$ erfolgt normalerweise erst bei vergleichsweise hohen Tempera-(Bereich 300-600°C), wobei turen Alkoholate R₃Si(OR) leichter, Chloride R₃SiCl weniger leicht als Hydride R₃SiH abgespalten werden [1]. Rascher, d. h. bei niedrigeren Temperaturen, kann die thermische Eliminierung von R'₃SiZ aus sterisch überladenen Silanen $R_2SiZ-SiR'_3$ erfolgen (z. B. $({}^iPr_3Si)_2SiH-Si'Pr_3 \rightarrow$

 ^{☆ 142.} Mitteilung über Verbindungen des Siliciums. Zugleich 26.
Mitteilung über sterisch überladene Verbindungen des Siliciums. 141.
(25.) Mitteilung: [5].

^{*} Corresponding author. Tel.: +49-89-21807456; fax: +49-89-21807865.

E-mail address: niw@cup.uni-muenchen.de (N. Wiberg).

 $({}^{1}Pr_{3}Si)_{2}Si + {}^{1}Pr_{3}SiH$ bei 225°C in Stunden [2]; sterische Reaktionsbeschleunigung). Entsprechendes gilt für die Eliminierung von MHal aus Silaniden R₂SiHalM, die wegen der hohen Bildungstendenz der Metallhalogenide selbst bei Fehlen raumerfüllender siliciumgebundener Substituenten in den Edukten häufig schon bei Raumtemperatur und darunter beobachtbar ist (elektronische Reaktionsbeschleunigung). Eine weitere Methode der Silylenerzeugung besteht schließlich in der Umlagerung von Disilenen gemäß R₂Si = SiR₂ \rightarrow R₃Si– SiR (vgl. Lit. [1f] und [3]).

Nun konnten wir mit den Disupersilylsilanen R^{*}₂SiX₂ $(R^* = Supersilvl = Si^t Bu_3; X = H, Me, Ph, Hal [4]), den$ Alkalimetallsupersilylsilaniden $R^*XSiHalM$ (X = H, Ph, Hal; erhältlich durch Reaktion von R*XSiHal₂ und M [5]) und den Alkalimetalldisupersilvlsilaniden R^{*}SiHalM (erhältlich durch Reaktion von R^{*}SiHal₂ und M [5]) sterisch überladene Verbindungen gewinnen, die leicht, d.h. bei vergleichsweise niedrigen Temperaturen in Silylene R*XSi und R^{*}Si überführbar sind. Die betreffenden Silylene entstehen jeweils als reaktive Zwischenprodukte; ihre intermediäre Existenz muß demzufolge durch Reaktionen mit geeigneten chemischen Fängern indirekt sichtbar gemacht werden. Typische Abfangreaktionen für Silylene stellen Insertionen in SiH-Bindungen dar, die laut ab initio Berechnungen [1,6] besonders leicht (leichter als in SiHal-Bindungen) erfolgen, darüber hinaus [1+2]-, [1+3]- und [1+4]-Cycloadditionen.

Nachfolgend sei nunmehr auf unsere Studien zur Erzeugung der Silylene R*XSi und des Silylens R₂*Si auf den genannten Wegen, auf den Nachweis ihrer intermediären Existenz und auf einige ihrer chemischen Reaktionen eingegangen (bezüglich vorläufiger Hinweise auf die zur Diskussion stehenden Silylene vgl. Refs. [7,8], bezüglich der Silylenbildung durch Umlagerung gemäß R*HalSi = SiHalR* \rightarrow R*Hal₂Si-SiR* vgl. Ref. [9]).

2. Bildung und Reaktionen der Silylene R*XSi $(R^* = Si'Bu_3; X = H, Me, Ph, Hal)$

2.1. Monosupersilylsilylene R^*XSi durch Thermolyse von Disupersilylsilanen $R_2^*SiX_2$ ($X_2 = H_2$, HMe, HPh, HBr, F_2 , Br_2 , I_2)

Im Sinne des oben Besprochenen eliminieren die Disupersilylsilane $R_2^*SiH_2$, R_2^*MeSiH , R_2^*PhSiH , R_2^*SiHBr und $R_2^*SiBr_2$ in Triethylsilan als Solvens die Silane R*H bzw. R*Br (im Falle von $R_2^*SiBr_2$) bereits um 160°C in Tagen (Schema 1, Gleichungen (a)). Auf die intermediäre Existenz der Silylene R*HSi, R*MeSi, R*PhSi und R*BrSi weist hierbei die Bildung der Insertionsprodukte R*XHSi-SiEt₃ (X = H, Me, Ph, Br) der betreffenden Silylene in die SiH-Bindung von Et₃SiH

Schema 1. Bildung von R*HSi aus Disupersilylsilanen und Silylenreaktionen.

(Schema 1, Gleichung (b)). Darüber hinaus spricht die Bildung des [1 + 4]-Cycloaddukts von R*HSi und Butadien als Folge der Thermolyse von R₂^{*}SiH₂ und C₄H₆ in C₆D₆ bei 160°C für das Intermediat R*HSi (Schema 1, Gleichung (c)). Demgegenüber verbleibt R₂^{*}SiF₂ auch nach wochenlanger Thermolyse bei 225°C in Et₃SiH unverändert. In diesem Zusammenhang sei die Silylenbildung durch Umlagerung von Disilenen erwähnt (s. oben und [1f], [3]), die von uns im Falle von Dihalogendisupersilyldisilenen nachgewiesen werden konnte [9]: R*HalSi=SiHalR* + Et₃SiH → R*Hal₂Si-SiR* + Et₃SiH → R*Hal₂Si-SiHR*(SiEt₃) (Bildung von R*XSi mit X = R*Hal₂Si).

Die Geschwindigkeit der R*MeSi-Bildung aus sterisch überladenerem R_2^*MeSiH ist etwas größer als die der R*HSi-Bildung aus $R_2^*SiH_2$ (vgl. Exp. Teil). Noch rascher thermolysieren offensichtlich R_2^*PhSiH (bisher nicht eingehender untersucht) und wohl auch R_2^*SiHBr und $R_2^*SiBr_2$ unter Silylenbildung (vgl. Exp. Teil), wogegen $R_2^*SiF_2$ deutlich langsamer zerfällt (s. oben). Typischerweise erfolgt die R*Br-Abspaltung ganz im Sinne des einleitend Besprochenen langsamer als die R*H-Abspaltung mit der Folge, daß R_2^*SiHBr ausschließlich in R*BrSi und R*H übergeht (die Bildung von R*BrSi erfolgt aus R_2^*SiHBr etwa gleich rasch wie die aus sterisch überladenerem $R_2^*SiBr_2$; vgl. Exp. Teil).

Die Thermolyse von R2SiHBr bzw. R2SiBr2 in Et₃SiH wickelt sich nicht einheitlich unter Bildung von R*H/R*BrSi bzw. R*Br/R*BrSi gemäß Schema 1, Gleichung (a), ab, da Et₃SiH unter den Reaktionsbedingungen in einer Nebenreaktion zugleich gemäß Schema 1, oberste Reaktionsreihe, mit R2SiHBr bzw. R2SiBr2 unter Austausch von Br gegen H und Bildung der Silane R^{*}₂SiH₂ in erstem bzw. R^{*}₂SiHBr und R^{*}₂SiH₂ in zweitem Falle neben Et₃SiBr reagiert. Da die Verbindungen R^{*}₂SiHBr bzw. R^{*}₂SiH₂ ihrerseits unter R*H-Eliminierung in die Silvlene R*BrSi bzw. R*HSi übergehen (s. oben), welche von Et₃SiH abgefangen werden, enthalten die betreffenden Thermolyselösungen neben R*BrHSi-SiEt₃ zusätzlich R*H₂Si-SiEt₃ als Silylenabfangprodukte (Molverhältnis im ersten Falle 1:0.6, im zweiten Falle 1:0.3).

Schema 2. Bildung von R^*XSi aus Supersilylsilaniden und Silylenreaktionen (die Reaktion von R^*HSiCl_2 und Mg (THF, 65°C) führt außer zu $(R^*HSi)_3$ und $(R^*HSi)_4$ zu $R^*H_2Si-SiH_2R^*$ [11]; $R^*PhSiXNa$ geht über R^*PhSi und $R^*PhXSi-SiNaPhR^*$ in isolierbares $R^*PhSi=SiPhR^*$ über; analog Et₃SiH wirkt $R^*PhClSiH$ als Silylenfänger).

Etwas rascher als in Triethylsilan zersetzt sich R^{*}₂SiBr₂ in Benzol in Anwesenheit von Iod. Als Produkte bilden sich R*Br, R*SiBrI₂, R*I und R*SiBr₂I im Molverhältnis 7:7:6:6. Zur Erklärung kann man annehmen, daß das aus R^{*}₂SiBr₂ neben R^{*}Br hervorgehende Silylen R*BrSi mit Iod das Produkt R*SiBrI₂ liefert und daß zugleich Iod das Silan R^{*}SiBr₂ ohne Zwischenbildung eines Silvlens — unter SiSi-Bindungsspaltung in R*I und R*SiBr₂I überführt. Allerdings müsste dann I₂ das Silylen R*BrSi etwas rascher als Et₃SiH abfangen, da anderenfalls die Erhöhung der Reaktionsgeschwindigkeit unverständlich bliebe. In diesem Zusammenhang sei auch die Umsetzung von R^{*}₂SiH² mit I² in Methylenchlorid als Solvens bei 65°C erwähnt [10], die im Zuge der Bildung von R^{*}₂SiI₂ als Zwischenprodukt [4] weiter zu R^{*}I und R*SiI₃ führt. Letzteres Silan könnte auf dem Wege über das mit I_2 abfangbare, aus $R_2^*SiI_2$ hervorgehende Silylen R*ISi und/oder auf dem Wege einer SiSi-Bindungsspaltung durch I₂ entstehen (die R*Hal-Eliminierung aus R^{*}₂SiHal₂ sollte — schon wegen des wachsenden Raumbedarfs des Halogens in Richtung $Hal = F < Cl < Br < I - für R_2^*SiI_2$ deutlich rascher als für R^{*}₂SiBr² erfolgen; vgl. hierzu die Thermolysestabilität von $R_2^*SiF_2$ oben).

Deutlich rascher als die Thermolyse von $R_2^*SiH_2$ in Anwesenheit von Triethylsilan oder Butadien und deshalb wohl nicht über das Silylen R*HSi erfolgen die Umsetzungen von $R_2^*SiH_2$ in C₆D₆ mit S₈ bzw. N₂O zu R*SH bzw. zu R*H und vielen nicht identifizierten Verbindungen (vgl. Exp. Teil).

2.2. Monosupersilylsilylene R^*XSi durch Thermolyse von Supersilylsilaniden $R^*XSiHalM$ (X = H, Ph, Hal; M = Na, MgHal)

Im Sinne des einleitend Besprochenen eliminieren die Supersilylsilanide R*HSiCl(MgCl), R*PhSiClNa, R*SiCl₂Na, R*SiBr₂Na und R*SiI₂Na, welche durch Metallierung von R*HSiCl₂ mit Mg von R*PhSiHCl mit NaR* bzw. R*PhSiClBr mit Na sowie von R*SiCl₂Br, R*SiBr₃ bzw. R*SiI₃ mit NaR* zugänglich sind [11], bereits bei vergleichsweise niedrigen Temperaturen $(-50^{\circ}C)$ MHal unter Bildung der Silvlene R*HSi, R*PhSi, R*ClSi, R*BrSi und R*ISi (vgl. Schema 2, Gleichungen (a)). Ihre intermediäre Existenz lässt sich durch Abfangreaktionen der betreffenden Spezies, also etwa durch Insertion der Silylene in die SiH-Bindung der Silane Et₃SiH und R*PhClSiH sichtbar machen (vgl. Schema 2, Gleichung (b)). Weitere typische Abfangreaktionen der Silylene stellen deren Insertionen in SiM-Bindungen von Silaniden dar — z. B. in die SiNa-Bindung von Supersilylnatrium R*Na oder die der Silvlenquellen R*SiCl₂Na, R*SiBr₂Na bzw. R*SiI₂Na (vgl. Schema 2, Gleichungen (c) und (d)).

Letztgenannte Insertionen sind typische Folgereaktionen der aus Silylenquellen R*XSiHalM freigesetzten Silylene R*XSi. Offensichtlich weisen die betreffenden Quellen sogar vergleichsweise hohe Fängerqualitäten auf. Demgemäß stabilisiert sich etwa das aus R*SiI₂Na in Anwesenheit von Et₃SiH in THF erzeugte Silylen R*ISi nicht unter Insertion in die SiH-Bindung und Bildung von Et₃Si-(R*ISi)-H, sondern unter Insertion in die SiNa-Bindung und Bildung von R*I₂Si-(R*ISi)-Na [Schema 2, Gleichung (d)]. Das aus R*SiCl₂Na erzeugte Silylen R*ClSi lagert sich nach unseren Ergebnissen sogar ein-, zwei- und dreimal in die SiNa-Bindung seiner Quelle unter Siliciumkettenaufbau und Bildung der Silanide R*Cl₂Si-(R*ClSi)_n-Na (n = 1, 2, 3) ein (Schema 2, Gleichungen (d), (e), (f)).

Die gebildeten Di-, Tri- und Tetrasilanide (Schema 2) eliminieren im Zuge ihrer Bildung bzw. bei weiterem Erwärmen der Reaktionslösungen NaHal unter Bildung von *trans*-konfigurierten Disilenen R*XSi=SiXR* (X = Cl, Br, I) sowie von Cyclosilanen (R*ClSi)₃ und (R*ClSi)₄ (Schema 2, Gleichungen (g), (h), (i)). Allerdings entstehen die Disilene nur als Zwischenprodukte, wobei ihre intermediäre Existenz aber durch Abfangreaktionen bewiesen werden konnte [9]. In einem Falle (X = Ph) erwies sich das Disilen unter Normalbedingungen als metastabil [7,12]: R*PhSi=SiPhR* ließ sich demgemäß als Endprodukt der über R*PhSiClNa und R*PhClSi-(R*PhSi)-Na führenden Reaktion von R*PhSiClBr mit Na isolieren (überschüssiges Na verwandelt das Disilen in ein Monoanion).

Die nachgewiesenen bzw. isolierten Produkte $(R^*XSi)_n$ (n = 2, 3, 4) stützen die oben vorgestellte Hypothese ihrer Bildung auf den im Schema 2 wiedergegebenen Wegen. Äußerst unwahrscheinlich ist natürlich, daß die Verbindungen $(R^*XSi)_n$ direkt durch Oligomerisierung der Silylenintermediate entstehen, und zwar wegen der anzunehmenden geringen Stationärkonzentration von R^*XSi .

Die relativen Ausbeuten der Produkte $(R*XSi)_n$ hängen von den relativen Geschwindigkeiten der Silvlen-Insertionen in die SiNa-Bindung der Silvlenquellen und der der Alkalimetallhalogenid-Eliminierungen aus den Insertionsprodukten ab. So bleibt der Siliciumkettenaufbau im Falle der Thermolyse von sterisch-überladenerem R*SiI₂Na anders als der im Falle der Thermolyse von weniger sperrigem R*SiCl₂Na schon auf der ersten Stufe stehen. Auch erfolgt die NaCl-Eliminierung aus R*Cl₂Si-(R*ClSi)-Na langsamer als aus $R*Cl_2Si-(R*ClSi)_n-Na$ (n=2, 3); denn nach Protolyse der von - 78°C auf + 25°C erwärmten Lösung von R*SiCl₂Na in THF enthält letztere noch R*Cl₂Si-SiHClR* (Protonierung des Disilanids), wogegen anstelle der protonierten Tri- und Tetrasilanide nur die Cyclosilane (R*ClSi), aufgefundenen werden (da das Disilanid R*Cl₂Si-(R*ClSi)-Na bei Raumtemperatur langsam unter Bildung von (R*ClSi)₄ zerfällt [9], bildet sich das aufgefundene Cyclotetrasilan wohl nur teilweise auf den Wegen (d), (e), (f) und (i) des Schema 2).

Schema 3. Bildung von R^{*}₂Si aus Disupersilylsilaniden und Silylenreaktionen (bzgl. der Quelle für 'H' vgl. allgemeine Ausführungen).

Einen Sonderfall stellt die zu $R^{H_2Si-SiH_2R^*}$, (R^{HSi})₃ und (R^{HSi})₄ führende Umsetzung von R^{HSiCl_2} mit Mg in THF bei 65°C dar [11]. Offensichtlich insertiert das durch Thermolyse des zunächst gebildeten Silanids $R^{HSiCl}(MgCl)$ entstehende Silylen R^{HSi} sowohl in die SiMg-Bindung seiner Quelle als auch in die SiH-Bindung des noch unverändert vorliegenden Edukts R^{HSiCl_2} . Die isolierten Produkte (R^{HSi})_n (n = 3, 4) bzw. $R^{H_2Si-SiH_2R^*}$ sind dann möglicherweise Folgeprodukte der Insertionsprodukte (das aus $R^{HSiCl_2R^*}$ sollte von Mg unter den Reaktionsbedingungen zu $R^{H_2Si-SiH_2R^*}$ reduziert werden [11]).

2.3. Disupersilylsilylen R_2^*Si durch Thermolyse von $R_2^*SiHalM$ (M = Li, Na; Hal = F, Cl, Br)

Während Lithium-fluordisupersilylsilanid LiSiFR2 (aus R^{*}₂SiF₂ und Li bei 25°C) bei Raumtemperatur langsam unter LiF-Eliminierung thermolysiert, zerfällt Lithiumchlorsupersilylsilanid LiSiClR^{*}₂ (aus R^{*}₂SiCl₂ und $\text{LiC}_{10}\text{H}_8$ bei -100°C) bereits bei -78°C und Lithiumbromdisupersilylsilanid LiSiBrR^{*}₂ (aus R^{*}₂SiBr₂ und LiC₁₀H₈ bei -130° C) bereits bei -120° C unter LiBr-Abspaltung. In beiden Fällen ließ sich die intermediäre Existenz der gemäß Schema 3, Gleichungen (a), erwartenden Bildung von Disupersilylsilylen zu chemisch bisher nicht durch Abfangreaktionen indirekt sichtbar machen. Sowohl in Anwesenheit von Triethylsilan als auch cis-Buten bildeten sich nicht die erwünschten 1,1-Additions- bzw. [1+2]-Cycloadditionsprodukte, sondern gemäß Schema 3, Gleichungen (b), ausschließlich Disupersilylsilan R2SiH2 und das Disilacyclobutan $[-R^{*}HSi-Si'Bu_{2}-CMe_{2}-CH_{2}-].$ Beide Verbindungen entstehen unabhängig von den Bedingungen der R^{*}₂Si-Erzeugung (niedrige oder hohe Temperaturen, THF, C₆D₆, C₆H₃Me₃, Et₃SiH oder cis-CH₃-CH=CH-CH₃ als Solvens) stets im Molverhältnis von ca. 1:6, wobei auch in volldeuteriertem Benzol sowie THF stets nur R^{*}₂SiH₂ gebildet wird. Dies spricht für eine gemeinsame reaktive Vorstufe beider Produkte, nämlich Disupersilylsilylen, dessen zentrales Si-Atom sich in eine CH-Bindung seiner Substituenten einschiebt oder Wasserstoff aus Supersilylgruppen aufnimmt (s. unten). Nur am Rande sei erwähnt, daß das Disilacyclobutan oxidationsempfindlich ist und bei gleichzeitiger Einwirkung von Luft und Wasser gemäß Schema 3, Gleichung (c), in ein Dihydroxydisilabutan übergeht.

3. Abschließende Bemerkungen

3.1. Bildung und Reaktionen von Silylenen

Die Disupersilylsilane R^{*}₂SiX² und die Supersilylsowie Disupersilylsilanide R^{*}XSiHalM sowie $R_2^*SiHalM$ gehen, wie besprochen, unter thermischer R^*X - bzw. MHal-Eliminierung in Silylene R*XSi und R_2^*Si über. Das wohl auf der Seite der Silane und Silanide liegende Gleichgewicht $R_2SiYZ \Rightarrow R_2Si + YZ$ verschiebt sich dadurch auf die Seite der Silylene, daß (i) MHal aus dem Reaktionsmedium ausfällt (wohl im Falle von R_2^*SiFLi), daß sich (ii) die aus R_2SiYZ hervorgehenden Silylene unter Bildung von Folgeprodukten stabilisieren (vgl. $R_2^*SiH_2$ -Thermolyse, Exp. Teil) oder daß (iii) die gebildeten Silylene von geeigneten Reaktanden wie Et₃SiH, CH₂=CH−CH=CH₂, NaR* abgefangen werden.

Erwähnt sei in diesem Zusammenhang, daß die MHal-Eliminierung offensichtlich in Stufen erfolgt [1] und wohl von den Silaniden R2SiHalM mit vierzähligem Silicium über Silylenoide R2Si(HalM) und Silaylide $R_2^*Si \leftarrow D$ (D = Donorlösungsmittel) zu den Silvlenen führt. In den Silvlenoiden wirkt HalM möglicherweise im Sinne von $R_2^*Si \leftarrow HalM$ (dreizähliges Silicium) wie ein Donor in den Silayliden. Offensichtlich vermögen die Silylenoide (bzw. Silaylide) teilweise direkt mit den genutzten Silylenfängern zu den isolierten Silylenabfangprodukten abzureagieren. Als Folge der hohen Raumerfüllung des Supersilylrests in den Silylenquellen dürfte letztere Reaktionsmöglichkeit in den hier beschriebenen Fällen wenig wahrscheinlich sein.

3.2. Strukturen

Silylene R₂Si stellen — laut ab-initio Berechnungen - wie Carbene R_2C gewinkelte Moleküle dar [1]. Während aber Carbene im Sinne der Formulierungen $R_2C^{\bullet\bullet}$ bzw. R_2C : teils einen Triplett-, teils einen Singulett-Molekülgrundzustand aufweisen (z. B. H₂C^{••}, F₂C:), liegen alle bisher untersuchten Silylene im Sinne der Formulierung R₂Si: im Singulett-Molekülgrundzustand vor [1]. Der Übergang in den angeregten Triplett-Molekülzustand R₂Si^{••} erfordert eine mehr oder weniger große Anregungsenergie ΔE_{S-T} und ist mit dem Sprung eines nicht-bindenden Elektrons aus einem spⁿ-Molekülorbital des Siliciums mit geringem p-Charakter (n = klein) in ein p-Atomorbital des Siliciums verbunden. Der p-Charakter und damit die Energie des Orbitals der nicht-bindenden Elektronen wächst, d.h. ΔE_{S-T} sinkt wie berechnet wurde [1,6], mit abnehmender Elektronegativität der Reste R in R2Si und wachsendem, durch raumerfüllende Gruppen R aufweitbarem R-Si-R-Winkel. Beide Effekte zusammengenommen liefern für Silylene R2Si folgenden Zusammenhang für R und ΔE_{S-T} (kJ mol⁻¹): R = Me/ $\Delta E_{S-T} = -98.8, H/-77.5, SiH_3/-38.9, SiMe_3/$ -13.4, Si'Pr₃/+7.1, Si'Bu₃/+29.7. Der Übergang des Singulett- in den Triplett-Zustand findet hierbei im Falle von Me₂Si/H₂Si/(H₃Si)₂Si bei Winkeln größer 140/130/120° statt. Somit sind raumerfüllende Silylreste R in R₂Si prädestiniert für eine Triplett-Silylen-Stabilisierung. Nach experimentellen Studien von P.P. Gaspar und Mitarbeitern liegt (ⁱPr₃Si)₂Si wohl noch im Singulett-Zustand vor [2], während (ⁱPr₃Si)(ⁱBu₃Si)Si möglicherweise bereits einen Triplett-Grundzustand besitzt [13]. Hiernach sollte (^tBu₃Si)₂Si mit hoher Wahrscheinlichkeit ein Triplett-Silylen sein, dessen Stabilisierung in einer intramolekularen Abstraktion entweder eines oder zweier H-Atome aus der Molekülperipherie bestünde, wobei das im ersten Falle gebildete Diradikal zu [-R*HSi-Si'Bu₃-CMe₂-CH₂-] cyclisierte und die im zweiten Falle enstehende Verbindung mit zwei radikalischen C-Atomen anschließend Wasserstoff aus der chemischen Umgebung (Solvens) aufnähme. Die Reaktionsträgheit von R^{*}₂Si hinsichtlich typischer Fänger für Singulett-Silylene (z. B. Et₃SiH, cis-Buten) könnte somit sowohl sterische als auch elektronische Ursachen haben.

4. Experimenteller Teil

Alle Untersuchungen wurden unter strengem Ausschluß von Wasser und Luft durchgeführt. ÖV = Ölpumpenvakuum, HV = Hochvakuum. Zur Verfügung standen: Li, Et₃SiH, Butadien, C₁₀H₈, cis-Buten. Nach Literaturvorschriften wurden synthetisiert: Aktiviertes Mg [11], R^{*}₂SiH₂ [4], R^{*}₂MeSiH [4], R^{*}₂HSiBr [4], R^{*}₂SiCl₂ [4], R^{*}₂SiBr₂ [4], R^{*}₂SiF₂ [4], R*PhHSiCl [10], R*HSiCl₂ [10], NaR* × 2THF [14]. Die Gewinnung von R*SiCl₂Br erfolgte durch Bromierung von R*HSiCl₂ mit Br₂ bei 0°C in CH₂Cl₂. Die Verbindung verbleibt in quantitativer Ausbeute nach Abkondensieren aller im ÖV flüchtigen Anteile [¹H-NMR (C₆D₆, iTMS): $\delta = 1.208$ (s; Si^{*t*}Bu₃); — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 24.44/30.95 (3CMe_3/$ $3CMe_3$; — ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 10.35$ (SiCl₂Br), 10.62 (Si'Bu₃)]. Die Lösungsmittel (Et₃SiH, C₆H₆, C₆D₆, THF, Pentan, Et₂O, Mesitylen, *cis*-Buten) wurden vor Gebrauch getrocknet.

Für NMR-Spektren standen Multikerninstrumente zur Verfügung: Jeol FX-90Q (${}^{1}H/{}^{13}C/{}^{29}Si/{}^{19}F$: 89.55/ 22.49/17.75/84.27 MHz), Jeol GX-270 (${}^{1}H/{}^{13}C/{}^{29}Si$: 270.17/67.94/53.67 MHz) und Jeol GSX-400 (${}^{1}H/{}^{13}C/{}^{29}Si$: ${}^{29}Si/{}^{19}F$: 399.78/100.54/79.43/375.97 MHz). Die ${}^{29}Si$: NMR-Spektren wurden mit Hilfe eines INEPT- bzw. DEPT-Pulsprogramms mit energetisch optimierten Parametern für die jeweiligen Substituenten aufgenommen. Für Massenspektren diente ein Gerät Varian CH7 bzw. MStation JMS 700 der Firma Jeol. — Die Produkttrennungen erfolgten mit einem HPLC-Gerät der Firma Waters (Säule 21.2×250 mm; Füllung Zorbax 18; Fluß 21 mL min ${}^{-1}$; Detektion UV bei 223 nm, Refraktometrie). 4.1. Thermolyse von $R_2^*SiX_2$ in An- und Abwesenheit von Silylenfängen

4.1.1. Erzeugung von R*HSi in Anwesenheit von Triethylsilan bzw. Butadien

(i) Man erwärmt 0.129 g (0.301 mmol) R^{*}₂SiH₂ in 0.4 mL (2.52 mmol) Et₃SiH 30 Tage auf 170°C. Laut NMR-Spektren haben sich ausschließlich R*H₂Si-SiEt₃ und R*H [14] gebildet. Nach Abkondensieren aller im OV flüchtigen Anteile und Sublimation des Rückstands bei 110°C im HV erhält man 0.086 g (0.249 mmol; 83%) $R^{H_2}Si-SiEt_3$ als farbloses Öl. — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.803$ (q; ${}^{3}J_{HH} = 7.9$ Hz; $3CH_2CH_3$), 1.054 (t; ${}^{3}J_{HH} = 7.9$ Hz; $3CH_2CH_3$), 1.190 (s; Si'Bu₃), 3.017 (s; SiH₂). - ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 5.76/8.07$ (3*CH*₂CH₃/3CH₂*CH*₃), 22.93/ 31.00 (3CMe₃/3CMe₃). - ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -121.14$ (SiH₂; bei ¹H-Kopplung: t mit ${}^{1}J_{\text{SiH}} = 159.5 \text{ Hz}$, -1.63 (SiEt₃; bei ${}^{1}\text{H-Kopplung: m}$), 20.82 (Si^tBu₃). — IR (KBr): v = 2150 cm⁻¹ (SiH). — MS: m/z = 344 (M⁺; 1%), 315 (M⁺-Et; 2%), 287 (M⁺) -'Bu; 100%), 145 (M⁺-Si'Bu₃). — Analyse $(C_{18}H_{44}Si_3, M_r = 344.8)$: Ber. C, 62.70; H, 12.68%; gef. C, 61.89; H, 12.77%. — (ii) Man erwärmt 0.006 g (0.014 mmol) R₂*SiH₂ und 0.070 mmol CH₂=CH-CH=CH₂ in 0.4 ml C₆D₆ 28 Tage auf 160°C. Laut NMR vollständiger Umsatz von $R_2^*SiH_2$ zum [1+4]-Cycloaddukt von R*HSi und Butadien neben R*H [14]. Nach Abkondensieren aller im ÖV flüchtigen Anteile (einschließlich R^*H) verbleibt $R^*HSiC_4H_6$ als farbloser Feststoff. — ¹H-NMR (C₆D₆, iTMS): $\delta = 1.147$ (s; Si'Bu₃), 1.748 (m/m; 2H/2H von 2CH₂ (m; 2CH), 4.185 (t von t; ${}^{3}J_{HH} = 6.6$; ${}^{3}J_{HH'} = 5.1$ Hz; SiH), 5.754 (m; 2CH). — ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 23.28/$ 31.28 (3CMe₃/3CMe₃), 16.23 (2CH₂), 132.05 (2CH). — ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -31.37$ (SiH; bei ¹H-Kopplung: d von m mit ¹ $J_{SiH} = 169.7$ Hz) 6.54 (Si'Bu₃). — Anmerkungen: (1) Die 28tägige Thermolyse von $R_2^*SiH_2$ bei 160°C in C_6D_6 führt zu R*H [14] und vielen nicht identifizierten Verbindungen. ----(2) Die 3tägige Thermolyse von $R_2^*SiH_2$ und S_8 in C_6D_6 bei 140°C liefert als 'Bu₃Si-haltige Substanz ausschließlich R*SH $[15]^1$. — (3) Die 3tägige Thermolyse von R₂^{*}SiH₂ und N₂O in C₆D₆ bei 140°C führt zu R*H [14] und vielen nicht identifizierten Verbindungen.

4.1.2. Erzeugung von R*MeSi in Anwesenheit von Triethylsilan

Man erwärmt 0.148 g (0.334 mmol) R_2^*MeSiH und 0.4 mL (2.52 mmol) Et_3SiH 20 Tage auf 160°C. Laut NMR-Spektren haben sich ausschließlich R*MeHSi–SiEt₃ und R*H [14] gebildet. Nach Abkondensieren

aller im ÖV flüchtigen Anteile und Sublimation des Rückstands bei 110°C im HV erhält man 0.096 g (0.268 mmol, 80%) R*MeHSi-SiEt₃ als farbloses Öl. — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.407$ (d; ${}^{3}J_{HH} = 5.5$ Hz; SiMe), 0.807 (q; ${}^{3}J_{HH} = 7.8$ Hz; $3CH_{2}CH_{3}$), 1.064 (t; ${}^{3}J_{\text{HH}} = 7.8$ Hz; $3\text{CH}_{2}CH_{3}$), 1.196 (s; Si'Bu₃), 3.636 (q; ${}^{3}J_{\text{HH}} = 5.5 \text{ Hz}; \text{ SiH}$). — ${}^{13}C\{{}^{1}\text{H}\}\text{-NMR} (C_{6}D_{6}, \text{ iTMS})$: $\delta = -6.74$ (SiMe), 5.15/8.49 ($3CH_2CH_3/3CH_2CH_3$), $23.69/31.68 (3CMe_3/3CMe_3). - {}^{29}Si{}^{1}H{}-NMR (C_6D_6),$ eTMS): $\delta = -82.06$ (SiH; bei ¹H-Kopplung: d von m mit ${}^{1}J_{SiH} = 156.0$ Hz), -2.41 (SiEt₃; bei 1 H-Kopplung: m), 16.99 (Si^{*t*}Bu₃). — IR (KBr): $\delta = 2142$ cm⁻¹ (SiH). - MS: m/z = 385 (M⁺; 2%), 343 (M⁺-Me; 1%), 329 $(M^+ - \text{Et}; 2\%)$, 301 $(M^+ - {}^t\text{Bu}; 100\%)$. – Analyse $(C_{19}H_{46}Si_3, M_r = 358.8)$: Ber. C, 63.60; H, 12.92%; gef. C, 62.91; H, 12.74%.

4.1.3. Erzeugung von R*PhSi in Anwesenheit von Triethylsilan

Als Folge der Thermolyse von R^{*}₂PhSiH in Et₃SiH bei 150°C bildet sich neben R*H [14] das Silan R*PhHSi–SiEt₃ [11]. Nach Abkondensieren aller im ÖV flüchtigen Anteile liefert die Sublimation des Rückstands bei 80°C/HV R*PhHSi–SiEt₃ als farbloses Öl — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.733/0.955$ (m/t; ³J_{HH} = 7.6 Hz; $3CH_2CH_3/3CH_2CH_3$), 1.185 (s; Si'Bu₃), 4.223 (breit; SiH), 7.09–7.12/7.67–7.69 (m/m; *m-/o-*, *p*-H von Ph). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 5.48/8.54$ ($3CH_2CH_3/3CH_2CH_3$), 24.03/31.88 ($3CMe_3/3CMe_3$), 128.0/128.2/137.2/137.6 (*m-/p-/o-/i*-C von Ph). — ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = -67.55$ (SiH, bei ¹H-Kopplung: d von m mit ¹J_{SiH} = 158.6 Hz), -3.96 (SiEt₃; bei ¹H-Kopplung: d von m mit ²J_{SiH} = 13.3 Hz), 17.95 (Si'Bu₃).

4.1.4. Erzeugung von R*BrSi in Anwesenheit von Triethylsilan

Man erwärmt 0.203 g (0.400 mmol) R^{*}₂HSiBr (A) bzw. 0.287 g (0.489 mmol) R^{*}₂SiBr₂ (**B**) in jeweils 0.5 ml (3.1 mmol) Et₃SiH 4 Tage (A) bzw. 6 Tage (B) auf 170°C. Laut NMR haben sich R*HBrSi-SiEt₃, R*H₂Si-SiEt₃ [vgl. 5.1a] und R^{*}₂SiH₂ [4] im Molverhältnis 1.6:1.0:2.2 neben R*Br [14] und Et₃SiBr [16] (A) bzw. R*HBrSi-SiEt₃, R*H₂Si-SiEt₃ [vgl. 5.1a], R^{*}₂HSiBr [4] und R^{*}₂SiH₂ [4] im Molverhältnis 3.5:1.2:2.4:1.0 neben R*Br [14] und Et₃SiBr [16] (B) gebildet. Die Charakterisierung von R*HBrSi-SiEt₃ erfolgte im Verbindungsgemisch. — ¹H-NMR (C_6D_6 , iTMS): $\delta = 0.811$ (m; $3CH_2CH_3$), 1.023 (t; $^3J_{HH} = 7.8$ Hz; $3CH_2CH_3$), 1.217 (s; Si'Bu₃), 4.477 (s; SiH). — $^{13}C{^{1}H}-NMR$ iTMS): $\delta = 5.79/8.51$ $(C_6 D_6,$ $(3CH_2CH_3/3CH_2CH_3), 24.28/31.55 (3CMe_3/3CMe_3).$ $-{}^{29}\text{Si}\{{}^{1}\text{H}\}\text{-NMR}$ (C₆D₆, eTMS): $\delta = -32.04$ (SiH; bei ¹H-Kopplung: t von d mit ¹ $J_{SiH} = 176.2$ Hz und ${}^{3}J_{\text{SiH}} = 3.1$ Hz), 2.77 (SiEt₃), 13.66 (Si'Bu₃). — Anmerkung: Nach dreitägigem Erwärmen von 0.386 g

¹¹H-NMR (C₆D₆, iTMS): $\delta = 1.10$ (s; Si'Bu₃); — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 23.75/30.31$ (3*C*Me₃/3*C*Me₃). — ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 27.7$ (Si'Bu₃).

(0.490 mmol) $R_2^*SiBr_2$ und 0.127 g (0.50 mmol) I_2 in 0.4 ml C_6D_6 auf 100°C enthält die Reaktionslösung — laut NMR-Spektren — statt des Edukts die Produkte R^*SiBrI_2 [10], R^*Br [14], R^*SiBr_2I [10], R^*I [14] im Molverhältnis 7:7:6:6.

4.1.5. Erzeugung von R*FSi in Anwesenheit von Triethylsilan

Selbst nach dreiwöchigem Erwärmen von 0.117 g (0.252 mmol) $R_2^*SiF_2$ in 0.5 mL Et_3SiH liegt $R_2^*SiF_2$ — laut NMR — unverändert in der Reaktionslösung vor.

4.2. Thermolyse von R*XSiHalM und R^{*}₂SiHalM in An- und Abwesenheit von Silylenfängern

4.2.1. Erzeugung von R*HSi (in Zusammenarbei mit Ch.M.M. Finger)

Sechszehnstündiges Erwärmen von 0.548 g (1.83 mmol) R*HSiCl₂ und 14.7 mmol aktiviertem Mg in 10 mL THF auf 65°C liefert R*H₂Si–SiH₂R*, (R*HSi)₃, (R*HSi)₄ im Molverhältnis ca. 3:1:6 neben Spuren R₂*SiH₂. Bzgl. Einzelheiten der Umsetzung und Charakterisierung der Produkte vgl. [11].

4.2.2. Erzeugung von R*PhSi in Anwesenheit von Triethylsilan und Supersilylnatrium

(i) Jeweils 0.4 mmol R*PhHSiCl und NaR* liefern (i) in 1 mL (6.3 mmol) Et₃SiH — laut NMR-Spektren der Lösung — ausschließlich R*PhHSi-SiEt₃ neben R*H [14], (ii) in 2 ml THF/2 mmol Et₃SiH hauptsächlich R*PhHSi-SiClPhR* und R*H [14] neben wenig R*PhHSi-SiEt₃. Bezüglich Einzelheiten der Umsetzung und der Verbindungscharakterisierung von R*PhHSi-SiEt₃ und R*PhHSi-SiClPhR* vgl. [11,17]. — (ii) 2.3 mmol R*PhHSiCl und 1.1 mmol NaR* liefern in 25 ml THF bei — 78°C das zum Silan R^{*}₂PhSiH mit MeOH protolysierbare Silanid NaSiPhR^{*}₂. Bezüglich Einzelheiten der Umsetzung und der Verbindungscharakterisierung vgl. [10,11].

4.2.3. Erzeugung und Reaktionen von R*ClSi

Zu 0.434 g (1.15 mmol) R*SiCl₂Br in 10 ml THF werden 1.15 mmol NaR* in 2 ml THF getropft. Im Zuge des Erwärmens der dottergelben Suspension von gebildetem Silanid NaSiCl₂R* (protolysierbar mit CF₃CO₂H zu R*Cl₂SiH [11]) in THF löst sich NaSiCl₂R*, und man beobachtet eine Entfärbung der Lösung (ab ca. -40° C Wechsel in eine zitronengelbe, bei höheren Temperaturen in eine farblose Lösung). Laut NMR enthält die Lösung dann — nach Protolyse — das Disilan R*Cl₂Si–SiHClR*, das Cyclotrisilan (R*ClSi)₃ und das Cyclotetrasilan (R*ClSi)₄ im Molverhältnis 5:2:3. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 20 ml Pentan, Abfiltrieren unlöslicher Anteile, Abkondensieren von Pentan und Lösen des Rückstands in 0.4 ml C₆D₆ erfolgte die Verbindungstrennung durch HPLC mit 60%MeOH/40%'BuOMe. Retensionszeiten: 3.4 min (0.08 mmol R*Cl₂Si–SiHClR*), 11.2 min (0.035 mmol R₃*Si₃Cl₃), 24.0 min (0.057 mmol R₄*Si₄Cl₄). Identifizierung von R*Cl₂Si–SiHClR* und von R₄*Si₄Cl₄ durch Vergleich mit authentischen Proben [17,9]. *cis,trans*-1,2,3-Trichlor-1,2,3-trisupersilylcyclotrisilan R₃*Si₃Cl₃: Farbloser, asbestartiger Feststoff. — ¹H-NMR (C₆D₆, iTMS): δ = 1.357 (s; Si'Bu₃), 1.380 (s; 2 Si'Bu₃). — ¹³C{¹H}-NMR (C₆D₆, iTMS): δ = 28.00 (breit; 9 *C*Me₃), 31.90 (3 *CMe*₃), 32.32 (6 *CMe*₃). — ²⁹Si{¹H}-NMR (C₆D₆, eTMS): δ = -47.34 (SiCl), -45.54 (2 SiCl), 31.53 (Si'Bu₃), 35.35 (2Si'Bu₃). — MS: *m*/*z* = 786/788/790 (*M*⁺; 100%); 659/661 (*M*⁺ – 'BuCl, – HCl; 56%), 552/554 (*M*⁺ – 'Bu₃SiCl).

4.2.4. Erzeugung und Reaktionen von R*BrSi

Erwärmung einer auf -78° C gekühlten THF-Lösung von NaSiBr₂R* (aus R*SiBr₃ + NaR* [11]; protolysierbar zu R*HSiBr₂ [11]) liefert das durch Protolyse mit MeOH oder HBr in R*Br₂Si–SiHBrR* überführbare Disilanid R*Br₂Si–SiNaBrR* (Bildung ab -20° C). Bezüglich Einzelheiten der Umsetzung sowie Charakterisierung der Produkte vgl. [9,11].

4.2.5. Erzeugung und Reaktionen von R*ISi in An- und Abwesenheit von Triethylsilan

Erwärmung einer auf -78° C gekühlten THF-Lösung von NaSiI₂R* (aus R*SiI₃ + NaR* [11]; protolysierbar zu R*HSiI₂) liefert in An- oder Abwesenheit von Triethylsilan das durch Protolyse mit MeOH oder HBr in R*I₂Si–SiHIR* überführbare Disilanid R*I₂Si– SiNaIR* (Bildung ab -50° C). Bezüglich Einzelheiten der Umsetzung sowie Charakterisierung der Produkte vgl. [9,11].

4.2.6. Erzeugung von R^{*}₂Si in An- und Abwesenheit von Silylenfängern

Nach vierwöchiger Lagerung einer Lösung von LiSiFR^{*}₂ (aus R^{*}₂SiF² und Li [5]) in C₆H₆ bei Raumtemperatur bzw. nach Erwärmen einer auf -100 bzw. -130°C gekühlten Lösung von LiSiClR^{*}₂ bzw. LiSi- BrR_2^* (aus $R_2^*SiCl_2$ bzw. $R_2^*SiBr_2$ und $LiC_{10}H_8$ [5]) in Pentan/Et₂O/THF (2:1:4 Volumenteile) auf Raumtemperatur bilden sich (im Falle von LiSiClR^{*}₂ ab -78° C, im Falle von LiSiBrR^{*}₂ ab -120°C) — laut NMR-Spektren der Reaktionslösungen — das Disilacyclobutan -R*HSi-Si'Bu₂-CMe₂-CH₂- und das Silan R^{*}SiH₂ [4] im Molverhältnis 6:1. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in Pentan, Abfiltrieren unlöslicher Anteile und Abkondensieren von Pentan erhält man nach zweimaliger Umkristallisation des Rückstands aus jeweils 5 ml Aceton das Disilacyclobutan in 60 – 70% iger Ausbeute. — Farbloser, oxidationsempfindlicher Feststoff, Schmp. 245 – 246°C. — ¹H-NMR (C₆D₆, iTMS): δ = 1.119 (s;

CH₂), 1.240 (s; Si'Bu₃ + 'Bu), 1.317 (s; 'Bu), 1.377 (s; CH₃) 1.506 (s; CH₃), 4.262 (d von d mit ${}^{3}J_{HH} = 5.42$ und ${}^{3}J_{HH'} = 9.84$ Hz; SiH). — ${}^{13}C{}^{1}H{}-NMR$ (C₆D₆, iTMS): $\delta = 22.98$ (Si(CMe₃)₂ + Si(CMe₃)₂), 30.33 (CH_2) , 31.31, 31.39 $(Si(CMe_3)_2, Si(CMe_3)_2)$, 31.81 $(Si(CMe_3)_3), 31.91, 32.02 (SiCMe_2) + SiCMe_2), 36.87$ (CMe_2) . — ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ -69.98 (SiH; bei ¹H-Kopplung: d von t mit ¹J_{SiH} = 150.5 Hz und ${}^{2}J_{\text{SiH}} = 5.5$ Hz), 17.23 (Si'Bu₂), 39.45 (Si'Bu₃). MS: m/z = 426 (M^+ ; 4%), 411 (M^+ -Me; 15%), 369 $(M^+ - {}^tBu; 100\%)$, 327 $(M^+ - {}^tBu - C_3H_6;$ 37%), 313 $(M^+ - {}^tBu - C_4H_8; 20\%)$, 199 $(Si'Bu_3^+; 18\%)$. — Analyse ($C_{24}H_{54}Si_3$, $M_r = 426.9$): Ber. C, 67.52; H, 12.75%; gef. C, 66.79; H, 12.68%. — Anmerkungen: (1) Die Reaktionen von 0.20 mmol R^{*}₂SiCl₂ oder von 0.20 mmol R^{*}₂SiBr₂ mit 5 mmol Li bei Raumtemperatur in 5 ml THF (A) bzw. von 0.20 mmol R^{*}₂SiBr₂ mit jeweils 9 mmol Na bei Raumtemperatur in 5 ml THF (B), 3 ml Et_3SiH (C), 0.6 ml C₆D₆ (D), 5 ml Mesitylen (E), 5 ml cis-Buten (F) bzw. mit 0.20 mmol NaR* bei -78° C in 1 ml THF (G) führt in allen Reaktionsfällen (A-G) zum Disilacyclobutan —R*HSi-Si'Bu₂-CMe₂-CH₂und Silan $R_2^*SiH_2$ im Molverhältnis 6:1. — (2) Setzt man das Disilacyclobutan der Laboratmosphäre aus, so kommt es wohl auf dem Wege über ein Oxadisilacyclopentan -R*HSi-Si'Bu₃-CMe₂-CH₂-O- zur Bildung dessen Hydrolyseprodukt von $HO-R*HSi-Si'Bu_2-CMe_2-CH_2-OH: - ^1H-NMR$ $(C_6D_6, \text{ iTMS}): \delta = 1.079 \text{ (s; CH}_2), 1.245 \text{ (s; Si'Bu}_3),$ 1.282 (s; Si'Bu₂), 1.322 (s; CMe₂), 3.203 (s; SiH). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 22.99$ (CMe₂), 23.96 $(Si(CMe_3)_3)$, 24.40 (br.: Si(CMe_2)_2), 31.40 (br.; CMe_2), 31.83 (Si(CMe_3)₃), 31.96 (br.; Si(CMe_2)₂), 36.87 (CH₂(OH)). — ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta =$ 24.16 (SiH(OH)), 33.14 (Si'Bu₂), 46.90 (Si'Bu₃). MS: $m/z = 460 (M^+; 4\%), 445 (M^+ - \text{Me}; 4\%), 403 (M^+ -$ ^{*t*}Bu; 100%), $(M^+ - {}^{t}Bu - C_4H_8; 9\%)$. — IR (KBr): v =2081 cm⁻¹ (SiH).

Anerkennung

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung der Arbeiten mit Personal- und Sachmitteln.

Literatur

- Reviews über Silylene: (a) P.P. Gaspar, in: M. Jones Jr., R.A. Moss (Eds.), Reactive Intermediates, Vol. 1, Wiley, New York, 1978, p. 229; Vol. 2, 1981, p. 335; Vol. 3, 1985, p. 333. (b) Y.-N. Tang, in: R.A. Abramovitch (Ed.) Reactive Intermediates, vol. 2, Plenum Press, New York, 1982, p. 297. (c) C.-S. Liv, T.-H. Hwang, Adv. Inorg. Chem. Radiochem. 29 (1985) 1. (d) E.A. Chernyshev, N.G. Komalenkova, Russ. Chem. Rev. 59 (1990) 531. (e) M. Weidenbruch, Coord. Chem. Rev. 130 (1994) 275. (f) P.P. Gaspar, R. West, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of Organic Silicon Compounds, vol. 2, Wiley, Chichester, 1998, p. 2463. (g) M. Haaf, T.A. Schmedake, R. West, Acc. Chem. Res. 33 (2000) 704. (h) M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 121 (1999) 9722.
- [2] P.P. Gaspar, A.M. Beatty, T. Chen, T. Haik, D. Lei, W.R. Winchester, J. Braddock-Wilkin, N.P. Rath, W.T. Klooster, T. Koetzle, S.A. Mason, A. Albinati, Organometallics 18 (1999) 3921.
- [3] M. Kira, S. Ohya, T. Iwamoto, C. Kabuto, Organometallics 19 (2000) 1817.
- [4] N. Wiberg, W. Niedermayer, H. Nöth, J. Knizek, W. Ponikwar, K. Polborn, D. Feuske, G. Baum, Z. Anorg. Allg. Chem. 627 (2001) 594.
- [5] N. Wiberg, W. Niedermayer, H. Nöth, M. Warchhold, J. Organomet. Chem. (2001) in press.
- [6] M.C. Holthausen, W. Koch, Y. Apeloig, J. Am. Chem. Soc. 121 (1999) 2623.
- [7] N. Wiberg, Coord. Chem. Rev. 163 (1997) 217.
- [8] N. Wiberg, W. Niedermayer, K. Polborn, H. Nöth, J. Knizek, D. Fenske, G. Baum, in: N. Auner, J. Weis (Eds.), Organosilicon Chemistry IV, Wiley–VCH, Weinheim, 2000, p. 93.
- [9] N. Wiberg, H. Auer, S. Wagner, K. Polborn, G. Kramer, J. Organomet. Chem. 619 (2001) 110.
- [10] N. Wiberg, W. Niedermayer, H. Nöth, J. Knizek, W. Ponikwar, K. Polborn, Z. Naturforsch. Teil. B 55 (2000) 389.
- [11] N. Wiberg, W. Niedermayer, Z. Naturforsch. Teil. B 55 (2000) 406.
- [12] N. Wiberg, W. Niedermayer, K. Polborn, Eur. J. Inorg. Chem., in preparation.
- [13] P.P. Gaspar, Privatmitteilung.
- [14] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 542 (1997) 1.
- [15] Vgl. E. Kühnel, Doktorarbeit, Universität München, 1988.
- [16] W. Einholz, W. Gollinger, W. Hanbold, Z. Naturforsch. Teil. B 45 (1990) 25.
- [17] N. Wiberg, H. Auer, W. Niedermayer, H. Nöth, H. Schwenk-Kircher, K. Polborn, J. Organomet. Chem. 612 (2001) 141.